# Collective Vision Trust 

## Maths Curriculum



Collective
Vision Trust

## Maths Overview

Collective Vision Trust uses the White Rose Maths Scheme as the basis of its mathematics curriculum.

White Rose is a carefully sequenced scheme that builds up childrens' mathematical knowledge through clear explicit teaching. It makes good use of developing mathematical knowledge through using concrete apparatus to pictorial representation and, then, to abstract thinking. It is designed to support the development of reasoning and problem solving alongside fluency to support challenge and ambition.

We have used this curriculum to draw out the crucial knowledge that is the foundation of mathematical learning that gives children the fundamental building blocks to develop their mathematical understanding and progress. We have ensured that we build in lots of opportunities for children to recap their knowledge, in order to ensure it is firmly embedded and, that, their learning is part of their long term memory.

## Curriculum Intent

White Rose Maths scheme has a clear rationale for the sequence of the topics. Maths learning requires some things to be learned before others, for example place value needs to be understood before working with addition and subtraction. Similarly, addition needs to be learnt before looking at multiplication. White Rose, quite rightly, puts the emphasis on number skills first in all year groups. Number is the crucial building block for all areas of mathematics and, so, must be prioritised.

For some topics (e.g. shape and statistics) the order is not crucial - they need to come after number, but don't depend on each other, and, so, they can be taught in any order. The sequencing of these is planned to give as wide a variety of topics for pupils as possible in each term and year.

## Recap

Planned, quality recap is an essential feature of the curriculum. Teachers will incorporate recap into their daily and weekly plans. In addition, the following is worthy of note:

- On the spot accurate assessment is the key to good recap.
- Teachers will quickly move to longer recap of topic areas that pupils have not remembered.
- Differentiation of learning must be applied to recap work - some pupils will need more recap than others, which needs to happen without holding back the learning of the rest of the class.
- The first week in a half term is always a recap week. No new concepts are taught in recap weeks.
- Topic specific recaps are also in the White Rose plans.
- Teachers will also plan additional ongoing recaps as part of their weekly plans

|  | Autumn | Spring | Summer |
| :---: | :---: | :---: | :---: |
| Year 1 | - Recap - Reception <br> - Number: Place Value (within 10) <br> - Number: Addition and Subtraction (within 10) <br> - Geometry: Shape <br> - Number: Place Value (within 20) <br> - Recap - Autumn Term | - Recap - Autumn Term <br> - Number: Addition and Subtraction (within 20) <br> - Number: Place Value (within 50) <br> - Measurement: Length and Height <br> - Measurement: Weight and Volume <br> - Recap - Spring Term | - Recap - Autumn and Spring Term <br> - Number: Multiplication and Division <br> - Number: Fractions <br> - Geometry: Position and Direction <br> - Number: Place Value (within 100) <br> - Measurement: Money <br> - Measurement: Time <br> - Recap - Year 1 |
| Year 2 | - Recap - Year 1 <br> - Number: Place Value <br> - Number: Addition and Subtraction <br> - Measurement: Money <br> - Number: Multiplication and Division <br> - Recap - Autumn Term | - Recap - Autumn Term <br> - Number: Multiplication and Division <br> - Statistics <br> - Geometry: Properties of Shape <br> - Number: Fractions <br> - Recap - Spring Term | - Recap - Autumn and Spring Term <br> - Measurement: Length and Height <br> - Geometry: Position and Direction <br> - Recap and application <br> - Measurement: Time <br> - Measurement: Mass, Capacity and Temperature <br> - Recap - Year 2 |
| Year 3 | - Recap - Year 2 <br> - Number: Place Value <br> - Number: Addition and Subtraction <br> - Number: Multiplication and Division <br> - Recap - Autumn Term | Recap - Autumn Term <br> Number: Multiplication and Division <br> Measurement: Money <br> Statistics <br> Measurement: Length and Perimeter <br> Number: Fractions <br> Recap - Spring Term | - Recap - Autumn and Spring Term <br> - Number: Fractions <br> - Measurement: Time <br> - Geometry: Properties of Shape <br> - Measurement: Mass and Capacity <br> - Recap - Year 3 |
| Year 4 | - Recap - Year 3 <br> - Number: Place Value <br> - Number: Addition and Subtraction <br> - Measurement: Length and Perimeter <br> - Number: Multiplication and Division <br> - Recap - Autumn Term | - Recap - Autumn Term <br> - Number: Multiplication and Division <br> - Measurement: Area <br> - Number: Fractions <br> - Number: Decimals <br> - Recap - Spring Term | - Recap - Autumn and Spring Term <br> - Number: Decimals <br> - Measurement: Money <br> - Measurement: Time <br> - Statistics <br> - Geometry: Properties of Shape <br> - Geometry: Position and Direction <br> - Recap - Year 4 |
| Year 5 | - Recap - Year 4 <br> - Number: Place Value <br> - Number: Addition and Subtraction <br> - Statistics <br> - Number: Multiplication and Division <br> - Measurement: Perimeter and Area <br> - Recap - Autumn Term | - Recap - Autumn Term <br> - Number: Multiplication and Division <br> - Number: Fractions <br> - Number: Decimals and Percentages <br> - Recap - Spring Term | - Recap - Autumn and Spring Term <br> - Number: Decimals <br> - Geometry: Properties of Shape <br> - Geometry: Position and Direction <br> - Measurement: Converting units <br> - Measurement: Volume <br> - Recap - Year 5 |
| Year 6 | - Recap - Year 5 <br> - Number: Place Value <br> - Number: Addition, Subtraction, Multiplication and Division <br> - Number: Fractions <br> - Geometry: Position and Direction <br> - Recap - Autumn Term | - Recap - Autumn Term <br> - Number: Decimals <br> - Number: Percentages <br> - Number: Algebra <br> - Measurement: Converting Units <br> - Measurement: Perimeter, Area and Volume <br> - Number: Ratio <br> - Statistics <br> - Recap - Spring Term | - Recap - Autumn and Spring Term <br> - Geometry: Properties of Shape <br> - Recap and application, including SATs preparation <br> - Recap and application, investigations and preparations for KS3 |

## Crucial \& Extended Knowledge by Component

## Number: Place value

| Crucial Knowledge | Extended Knowledge |
| :---: | :---: |
| Number: an amount <br> - A number is an amount of something. <br> - It can be shown in words, digits, symbols or pictures to show that amount. <br> six 6 VI ...... <br> - We use numbers to count an amount. <br> - odd numbers are amounts which cannot be split equally (in whole numbers) between two <br> - even numbers are amounts which can be split equally between two <br> - A number must be a whole number to be odd or even. <br> - The ones (unit) digit show whether a number is odd or even. <br> Digit: a numeral 0 to 9 <br> - There are ten digits that we use. <br> - A digit is any one of these symbols: 0123456789 <br> - The number 23 is written with two digits; 2 and 3. <br> - Digits can be used to identify (show) something - like a telephone number or house number. <br> Place value: placement of digit <br> - Each digit holds a value. | Number line: a line with numbers placed in their correct position. <br> Useful for: <br> - Adding <br> - Subtracting <br> - Finding one more or one less <br> Roman Numerals $\begin{array}{ll} 1=I & 50=\mathrm{L} \\ 2=I I & 100=\mathrm{C} \\ 3=\mathrm{III} & 500=\mathrm{D} \\ 4=\mathrm{IV} & 1000=\mathrm{M} \\ 5=\mathrm{V} & \\ 6=\mathrm{VI} & \\ 7=\mathrm{VII} & \\ 8=\mathrm{VIII} & \\ 9=I X & \\ 10=\mathrm{X} & \end{array}$ |

- The value of a digit depends on where it is within a number.
- For example:

$$
3 \text { is } 000
$$

- In 37 the three has a value of 30
- In 307 the three has a value of 300


An estimate means to find a value close/near to the actual by making an observation or using some information we already know

## Rounding:

- When the digit to the right of the place value in question is 5 or above - round up
- When the digit to the right of the place value in question is 4 or below - round down

Negative numbers: A real number that is less than zero
often used to show a cold temperature

- Negative numbers are shown with a negative sign before the number. Eg. -5


## \section*{Number: Addition and subtraction}

Crucial Knowledge

## Extended Knowledge

+ addition: put together
- Adding is bringing two or more things together - they will make a new amount.
- Addition can be used to count (adding one or more each time).
- When adding the answer will always be greater than the parts being added.
- subtraction: taking apart
- Subtraction is taking apart or taking something away.
- Subtraction can be used to count backwards (taking away one or more away each time).
- The outcome of subtraction is the difference between two amounts (or numbers).

Total: the final amount or answer
$=$ (often called equals)

- This symbol means 'same as'
- It is usually used to show an answer

Other words for addition include:

- altogether
- sum
- in total

Other words for subtraction include:

- difference
- take away
- how many left
- minus

An inverse reverses the effect of another.

- Addition is the inverse of subtraction
- Subtraction is the inverse of addition
- Inverse operations can be used to check answers
- Eg. $20-4=16$, so $16+4=20$
$>$ greater than

The larger amount is placed by the larger opening and the smaller amount by the tip where the lines meet
$<$ less than

The smaller amount is placed where the lines meet and the larger amount by the larger opening where the lines are furthest apart

## Number bonds:

- Two numbers that make a set amount
- $(7+3=10, \quad 9+1=10, \quad 4+6=10)$
- Number bonds are used in addition and subtraction

Column addition and subtraction: Numbers are written in
place value columns underneath one another

- Start adding or subtracting the column on the right and work across to the left
- When adding, this can be done in any order (ie smallest or largest first)
- For subtraction the number you are taking away must go underneath the number you are starting with


## Number: Multiplication and division

Collective Vision Trust

## Crucial Knowledge <br> Extended Knowledge

Array: things (objects or numbers) are arranged in rows and columns.

Rows are something going across

Columns are something going down
Multiplying by $\mathbf{1 0}$ moves all the digits in a number one column to the left, eg $53 \times 10=530$
$\div$ division: splitting into parts

- Splitting in to equal parts is also 'fair sharing'.
- For example:

12 treats between 3 dogs is
$12 \div 3=4$


## 

They have 4 treats each.

- Sometimes there may be an amount that is 'left over' this is called a 'remainder'

Multiplying by $\mathbf{1 0 0}$ moves all the digits in a number two columns to the left, eg $53 \times 100=5300$

Dividing by $\mathbf{1 0}$ moves all the digits in a number one column to the right, eg $5300 \div 10=530$

Dividing by $\mathbf{1 0 0}$ moves all the digits in a number two columns to the right, eg $5300 \div 100=53$

Multiplying by 1 does not change the number, eg $53 \times 1=53$

Multiplying by $\mathbf{0}$ always gives an answer of 0 , eg $53 \times 0=0$

Dividing by 1 does not change the number, eg $53 \div 1=53$

Multiplication tables: multiplication facts for a given number

- Multiplication tables start with 1 x the number and finish with 12 x the number
- Multiplication tables can be used to answer both multiplication and division questions

Double is adding the same amount again (double 2 is $2+2$ )
Half is sharing equally by 2 (half of 6 is 6 shared by 2)
Partition: means to split into smaller parts.

Factors are numbers that divide into another number equally without anything left over.

- They usually come in pairs ( 1 and 12,2 and 6,3 and 4 are all factors of 12)

Multiples are the result after multiplying

- 12 is a multiple of 2 as $6 \times 2=12$


## Prime Numbers:

- only have two factors - itself and 1
- 1 is not a prime number

Square numbers are when a number is multiplied by itself to make a square

- One row and one column would make one square (or $1 \times 1=1$, so 1 is a square number)

Dividing by the number itself always gives an answer of 1 , eg $53 \div 53=1$

Indices (powers) tell us how many times to use the number in a multiplication.

- Eg. $8^{3}=8 \times 8 \times 8$

Order of operations is the rule to say which calculations we should do first. The rule is BIDMAS:

- Brackets
- Indices
- Division
- Multiplication
- Addition
- Subtraction
- Two rows and two columns would make four squares (or $2 \times 2=$ 4 , so 4 is a square number
- Three rows and three columns would make 9 squares (or $3 \times 3=$ 9 , so 9 is a square number)

Cube numbers are when a number is multiplied by itself three times to make a cube.

- length $x$ height $x$ width eg $3 \times 3 \times 3=27$, so 27 is a cube number


## Brackets show that things go together

## Calculate: solving

- We can use $+-x \div$ to calculate (solve) maths questions and problems.


## Method is a way of doing something

## Reasoning: to make sense

- Reasoning is making sense of maths by using maths skills and knowledge.
- Think about the information given and the maths skills you already know to find an answer (solution).
- E.g. If two pens cost 20 p, one pen must cost $10 p$
- I know there are two pens and the total cost is 20 p.
- If I separate the pens into singles, I have two groups of pens with one pen in each group.
- IfI separate the money in the same way - I separate the 20 in to two groups, I will have two 10ps, so each pen costs 10p


## Number: Fractions

## Crucial Knowledge

Fraction: part of a whole ( $1 / 2,3 / 4$ )

- The bottom number (denominator) is the total number of parts.
- The top number (numerator) is how many parts being used (looked at).
- Some fractions can be the same (equivalent) to other fractions. E.g. $2 / 4=1 / 2$


## Adding fractions:

- Only add the top number (numerator).
- If the bottom number is the same, it stays the same.
$\underline{2}+\underline{4}=\underline{6}$
888

- If the bottom number isn't the same, find a new number that relates to both denominators.
$\underline{1}+\underline{1}=\underline{4}+\underline{3}=\underline{7}$
$\begin{array}{llll}3 & 4 & 12 & 12\end{array} 12$


## Subtracting fractions:

- Only subtract the top number (numerator).
- If the bottom number is the same, it stays the same.
$\underline{4}-\underline{2}=\underline{2}$
$8 \quad 8 \quad 8$


## Extended Knowledge

A half is when a whole has been split into two equal parts. One of the parts is a half.

A quarter is when a whole has been split into four equal parts. One of the parts is a quarter.

A third is when a whole has been split into three equal parts. One of the parts is a third.

A unit fraction is one equal part of a whole.

- The numerator in a unit fraction is always 1.

Fractions are equivalent (equal to) if they show the same part of the whole.

- $\operatorname{Eg} \frac{1}{2}$ is equivalent to ${ }^{2 / 4}$
- $\quad \square$


You get tenths when you split one whole one into 10 equal parts. Each part is one tenth or $1 / 10$.

You have a whole one when the numerator (top number) is the same as the denominator (bottom number).

An improper fraction is a fraction where the numerator (top number) is bigger than the denominator (bottom number). It means the value is more than one whole one.

- If the bottom number isn't the same, find a new number that relates to both denominators.
$\underline{1}-\underline{1}=\underline{4}-\underline{3}=\underline{1}$
$\begin{array}{llll}3 & 4 & 12 & 12\end{array}$


## Multiplying fractions:

- Multiply the top number (numerator) and the bottom number (denominator)
$\underline{2} \times \underline{1}=\underline{2 \times 1}=\underline{2}$
$\begin{array}{llll}3 & 4 & 3 \times 4 & 12\end{array}$


## Dividing fractions:

- Keep the first fraction, change the divide to a multiply, flip the second fraction
- For example
$\frac{2}{3} \div \frac{1}{4}=\frac{2}{3} \times \frac{4}{1}=\frac{8}{3}$

A mixed number is where you have a whole number and a fraction combined. Eg $11 / 2$ - one and a half.

You can find a fraction of an amount by dividing the amount by the denominator and multiplying this answer by the numerator.

## Number - Decimals

## Crucial Knowledge

Decimals: smaller than one

- A decimal is a value smaller than one
- A decimal is shown to the right of a decimal point
- A decimal point is a dot showing that a value smaller than one is to follow
- For example: 0.42 shows four tenths and two hundredths

- Tenths are ten parts of one whole.
- Hundredths are one hundred parts of one whole.
- A decimal point never moves.


## Extended Knowledge

Fractions can be written as decimals.

- $1 / 2$ is 0.5 as a decimal
- $1 / 4$ is 0.25 as a decimal
- $1 / 10$ is 0.1 as a decimal
- $1 / 100$ is 0.01 as a decimal


## Number - Percentages

\section*{| Crucial Knowledge | Extended Knowledge |
| :--- | :--- |}

Percentage: part of a 100

- Per cent means out of 100
- \% this symbol means percent
- $40 \%$ means 40 out of 100
- $11 \%$ means 11 out of 100

Percentages can be written as fractions or decimals.

- $\operatorname{Eg~} 41 \%={ }^{41} / 100=0.41$
- $50 \%=1 / 2=0.5$
- $25 \%=1 / 4=0.25$
- $20 \%=1 / 5=0.2$
- $40 \%=2 / 5=0.4$
- $10 \%=1 / 10=0.1$
- $1 \%=1 / 100=0.01$

To find $\mathbf{1 0 \%}$ of an amount you divide by 10 .
To find $\mathbf{1 \%}$ of an amount you divide by 100 .

## Number - Ratio

## Crucial Knowledge <br> Ratio: compare values

- Ratio compares values (numbers) in a set order.
- Example: The ratio of dogs to cats is.

or
The ratio of cats to dogs is.

- : this symbol is used to separate the values in a ratio


## Number - Algebra

## Crucial Knowledge

Algebra: showing a number

- Using a letter or symbol to show a number

$$
\begin{aligned}
& y+3=10 \\
& \text { so here } y=7
\end{aligned}
$$

- To solve algebra inverse (opposite) instructions are used
- Inverse means the opposite
- Inverse of + is -
- Inverse of -is +
- Inverse of x is $\div$
- Inverse of $\div$ is $x$


## Extended Knowledge

An expression are a group of numbers letters and operations. Examples:

- $x+3$
- $4 y$
- $2 x-5$

Substitution is putting values (numbers) where letters are.
A formula is a rule written with mathematical symbols.

- Eg. $P=21+2 w$

An equation says that two things are equal

- Eg. 4


## Crucial Knowledge

Measure: the size of something

- To find out the size or amount of something.
- We can measure: distance, area, time, mass and volume.
- We often use a ruler to measure a length or height


## Length is long

Width is wide

## Height is tall

Weight is often used to describe the mass of an object - how heavy something is

Volume is the amount of space within something.
Money tells us how much something costs

- We use pounds ( $£$ ) and pence (p)
- 100 p is the same amount of money as $£ 1$

Time is how long something takes.

## Extended Knowledge

We use a ruler to measure a length in centimetres (Cm)


The block is 6 cm long
We measure lengths, widths and heights in $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$ and km .

Coins we use are: $1 p, 2 p, 5 p, 10 p, 20 p, 50 p, £ 1, £ 2$
Notes we use are $£ 5, £ 10, £ 20$ and $£ 50$

There are 7 days of the week: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday.

There are $\mathbf{1 2}$ months of the year: January, February, March, April, May, June, July, August, September, October, November, December.

On a clock the hour hand is the shorter hand, and the minute hand is the longer hand. Some clocks also have a second hand, this is also a longer hand, but you can see it move more quickly than the others.

Eg. Two o'clock


There are $\mathbf{2 4}$ hours in $\mathbf{1}$ day.
There are $\mathbf{6 0}$ minutes in $\mathbf{1}$ hour.

There are $\mathbf{6 0}$ seconds in $\mathbf{1}$ minute.

## Years:

- All years (except for leap years) have 365 days.
- A leap year has 366 days
- Leap years happen every 4 years

Twelve hour clock is where time is told using the twelve ours from midnight to midday (am times - $\mathbf{a f t e r} \mathbf{m i d n i g h t ) ~ a n d ~ t h e ~ t w e l v e ~ h o u r s ~ f r o m ~ m i d d a y ~ t o ~}$ midnight ( $\mathbf{p m}$ times - past midday).

Mass is how heavy an object is

- It is similar to weight

Capacity is how much something holds

- Capacity is usually a measure of liquid or gas

Temperature is how hot or cold something is

Perimeter is the length all the way around the edge of a shape

- You can find a perimeter by adding the lengths of all of the sides of the shape together

Area is measurement of a flat space.

- Area is the number of squares inside a shape

A compound shape is two or more shapes put together to make one shape.

Twenty four hour clock is where time is told using the full 24 hours in a day

We measure mass in grams (g) and kilograms (kg)

- There are $\mathbf{1 0 0 0}$ in $\mathbf{1 ~ k g}$

We measure capacity in millilitres ( $\mathbf{m l}$ ) and litres ( $\mathbf{I}$ )

- There are $\mathbf{1 0 0 0} \mathbf{m l}$ in $\mathbf{1 I}$

We measure temperature in degrees Centigrade $\left({ }^{\circ} \mathrm{C}\right)$

To calculate the area of rectangles, trinagles or parallelograms you use the formula for the shape:

Area of rectangle $=$ length $(I) \times$ width $(w)$


Area of triangle $=$ half $x$ base $(b) x$ height $(h)$


Converting units means changing from one unit to another

- You need to know the facts of how units are related to one another

Area of parallelogram $=$ base $(b) \times$ height $(h)$


100 cm is the same as 1 m There are 10 mm in $\mathbf{1 ~ c m}$ There are $\mathbf{1 0 0 0} \mathbf{m}$ in $\mathbf{1} \mathbf{~ k m}$

5 miles is roughly equivalent to $\mathbf{8 k m}$.

## Crucial Knowledge

Shape is an outline or form of an object.
Dimension is a measurement

- 2D (two dimensions) is a shape that has two measurements (e.g. width and height). It can't be picked up.
- 3D (three dimensions) is a shape that has three measurements (width, height, depth). It can be picked up.

Some shapes have names
Properties are things that all shapes with the same name have in common

## Extended Knowledge

Names of 2D shapes:

- Rectangle $\square$
- Square
- Triangle
- Circle

2D shapes have sides and vertices.

- a side is each line on the shape
- a vertex is a point where two lines meet

A polygon is a closed shape with straight sides.
An equilateral triangle is a triangle with all three sides the same length. All the angles in an equilateral triangle are $60^{\circ}$.

An isosceles triangle is a triangle with two equal sides. The angles opposite
the equal sides are also equal.


A scalene triangle is a triangle with all sides of different lengths. The angles are different too.

A quadrilateral is a four sided shape. Some quadrilaterals have special names:

- square has all of the sides the same length and all of the angles $90^{\circ}$ (right angles).

- rectangle has opposite sides the same length and all of the angles are $90^{\circ}$ (right angles).
$\square$
- rhombus has all sides the same length. The angles are not right angles. Opposite angles are equal.

- parallelogram has opposite sides the same length. The angles are not right angles. Opposite angles are equal.

- trapezium has one pair of sides parallel.


A circle is made by drawing a curve that is always the same distance from the centre. Some parts of a circle have special names:

- radius is the distance from the centre of a circle to the edge
- diameter is the distance across the circle, passing through the centre


| An angle is a space where two lines meet |
| :--- |

Regular means all the same.

- A regular shape means all sides are the same


## Irregular means not the same.

- An irregular shape means all sides are not the same

3D shapes have faces, edges and vertices.

- a face is each flat surface on the shape
- an edge is a line from one corner to another
- a vertex is a point where two edges meet (a corner)

A net is a pattern that you can cut out and fold to make a model of a 3D shape.

A prism is a 3D shape with flat faces. The two end faces are the same.

A right angle is a quarter turn
An acute angle is smaller than a right angle
An obtuse angle is larger than a right angle

We measure angles using degrees $\left({ }^{\circ}\right)$.

- A right angle is $90^{\circ}$.
- An acute angle is more than $0^{\circ}$ but smaller than $90^{\circ}$.
- An obtuse angle is more than $90^{\circ}$ but smaller than $180^{\circ}$.
- A straight angle is $180^{\circ}$
- A reflex angle is more than $180^{\circ}$ but smaller than $360^{\circ}$.

We use a protractor to measure angles


Two right angles will make a straight line or $180^{\circ}$.

|  | Angles that make a straight line will always add up to $180^{\circ}$. |
| :--- | :--- |
| Four right angles will make a full turn or $360^{\circ}$. |  |
| Angles that make a full turn will always add up to $360^{\circ}$. |  |
| Two lines that make a right angle are called perpendicular. |  |
| Herizontal lines go from side to side. |  |
| Lines are parallel if they are always the same distance apart. |  |

## Geometry - Position and Direction

## Crucial Knowledge

Position is where something is.

Direction tells you how to get to a position

Symmetry is when a shape is exactly like another shape when it is moved: rotated (turned) or flipped.

Reflection is when a shape flips to a mirror image

- It is identical in form but reversed like in a mirror

Translation moves a shape. It can move up, down or to the side

- It never changes its form or shape in any way

Grid CO-Ordinates are a way to find a position.

- They must always be given in the following order:
- The $x$ axis (row) is always shown first, followed by the $y$ axis (column)


## Extended Knowledge

A full turn is moving something around all the way in a circle. It is in the same position as it started at the end of the full turn.

A half turn is moving something around a half circle.

A quarter turn is moving something a quarter of a circle. It is at right angle to where it started from at the end of a quarter turn.

Clockwise is turning in the same direction as the hands of a clock.
Anti-clockwise is turning in the opposite direction as the hands of a clock.

## Statistics

## Crucial Knowledge

Data is information.

Statistics is looking at data

- Statistics is collecting and showing information (data) so that we can talk about it.

A table is list to record the information collected.

- A table has rows (go across) and columns (go down)

A graph is a picture to show the information (data).

## Extended Knowledge

A tally chart is used to collect data.

| Fruit | Tally |  |
| :---: | :--- | :--- |
| Banana | HH |  |
| Grape | $\\|\\|\\|$ |  |
| Pear | HH | $\\|\\|$ |
| Apple | $\\|\\|$ |  |

A pictograph shows data by drawing pictures.
A pictograph has a key that tells you how much each picture represents.


Block diagrams use blocks to show data


A bar chart shows data in bars. It uses a scale, which is the equal amounts that the data goes up in.


The scale on the left shows the data going up in 10 s.

A line graph is a graph with points connected by lines to show how something changes in value.


A pie chart shows data in sectors of a circle.


## coliective vision irust - iviatns curricuiurn

Collective
The mean (average) is a calculated "central" value of a set of numbers.

## To calculate it:

- add up all the numbers,
- then divide by how many numbers there are.

